The safe deposit

Not signed in | Sign in

Search for projects

Gallring och gödsling i skiktad granskog (Adaptiva)

PI: Ulla Nylander

Data from Wood decay studie 2015 by Anna Gunulf Åberg, plot 1565, 1566, 1572, 1575, 1576.

Wood decay fungussprucethinningfertilisationselection system

Sarkanenä ecological compensation area

PI: Olov Tranberg

Project aims to monitor biodiversity of saproxylic organisms in translocation of deadwood as means to improve ecological compensation. 700 logs of old deadwood and felled living trees were translocated into 30 experimental plots (including 10 controlls) in Sarkanenä, distributed at different deadwood densities. 10 randomly selected plots in Ätnarova works as a reference landscape.

biodiversitydeadwoodecological compensation

Ätnarova reference landscape

PI: Olov Tranberg

Project aims to monitor biodiversity of saproxylic organisms in translocation of deadwood as means to improve ecological compensation. 700 logs of old deadwood and felled living trees were translocated into 30 experimental plots (including 10 controlls) in Sarkanenä, distributed at different deadwood densities. 10 randomly selected plots in Ätnarova works as a reference landscape.

biodiversitydeadwoodecological compensation

2279 Ätnarova

PI: Ulla Nylander

Data from 2279 Ätnarova: plant and tree measurements 2006, 2010 and 2016.

heightdiameterleading shootselection system

1959 Korseleberget

PI: Ulla Nylander

Treedata from 1959 Korseleberget (P7) contorta 1983-2012.

contortadiameterheight

1470 Rödålund

PI: Ulla Nylander

Data from 1470 Rödålund (biomass sampling, plants inventory, ash content).

biomassinventoryash

Low and high nitrogen deposition rates in northern coniferous forests have different impacts on aboveground litter production, soil respiration, and soil carbon stocks

PI: Benjamin Forsmark

Nitrogen (N) deposition can change the carbon (C) sink of northern coniferous forests by changing the balance between net primary production and soil respiration. We used a field experiment in an N poor Pinus sylvestris forest where five levels of N (0, 3, 6, 12, 50 kg N ha-1 yr-1, n = 6) had been added annually for 12-13 years to investigate how litter C inputs and soil respiration, divided into its autotrophic and heterotrophic sources, respond to different rates of N input, and its subsequent effect on soil C storage. The highest N addition rate (50 kg N ha-1 yr-1) stimulated soil C accumulation in the organic layer by 22.3 kg C kg-1 N added, increased litter inputs by 46 %, and decreased soil respiration per mass unit of soil C by 31.2 %, mainly by decreasing autotrophic respiration. Lower N addition rates (≤12 kg N ha-1 yr-1) had no effect on litter inputs or soil respiration. These results support previous studies reporting on increased litter inputs coupled to impeded soil C mineralization, contributing to enhancing the soil C sink when N is supplied at high rates, but add observations for lower N addition rates more realistic for N deposition. In doing so, we show that litter production in N poor northern coniferous forests can be relatively unresponsive to low N deposition levels, that stimulation of microbial activity at low N additions are unlikely to reduce the soil C sink, and that high levels of N deposition enhance the soil C sink by increasing litter inputs and decreasing soil respiration.

carbon budgetnitrogen depositionsoil respiration