Search for projects with tag "boreal forest"
[ID: 261] Long-term nitrogen enrichment does not increase microbial phosphorus mobilization in a northern coniferous forest
Summary 1. Nitrogen (N) deposition can enhance carbon (C) capture and storage in northern coniferous forests but it may also enhance the demand for phosphorus (P). While it is well established that long-term N enrichment can decrease decomposition and enhance the accumulation of C in soils, it remains uncertain if a higher demand and acquisition of P influence soil C. 2. We studied microbial phosphorus mobilization and growth within a long-term N enrichment experiment in a Norway spruce forest, where N deposition was simulated by adding 0, 12.5, or 50 kg N ha-1 yr-1 for 21 yrs (n=12), by incubating microbial ingrowth cores with needles and humus with low and high P content, and with sand with and without mineral apatite P. 3. Long-term N enrichment had no effect on microbial P mobilization in needles and humus and did not enhance the positive effect that apatite had on fungal growth. However, it consistently strengthened the retention of C in the soil by decreasing decomposition of needle and humus, both with low and high P content, and by increasing fungal growth in sand-filled ingrowth cores. Further, we did not find any evidence that higher microbial P mobilization in response to N enrichment affected soil C storage. 4. These results show that long-term N enrichment in relatively young soils dominated by coniferous trees and ectomycorrhizal fungi can have relatively small impact on microbial P mobilization from organic sources and on the potential to mobilize P from minerals, and subsequently that elevated P demand due to N enrichment is unlikely to lead to a reduction in the soil C accumulation rate.
boreal forestcarbon sequestrationnitrogen depositiondecompositionsoil phosphorusapatiteectomycorrhizal fungi
[ID: 151] The impacts of long-term, high intensity N addition on soil organic matter accumulation in a boreal forest
PI: Shun Hasegawa
N addition is reported to influence decomposition of soil organic matters and potentially enhance carbon accumulation in boreal or temperate forests. Here, we investigate the effect of chronic N addition on boreal forests situated in norther Sweden with an aim of discerning the mechanisms altering the balance of accumulation and decomposition of soil organic matters. We will collect soil samples from the organic layer at Svartberget, Åheden, Rosinedal, Flakaliden and analyze molecular composition of soil organic matters as well as enzymatic activities responsible for C decomposition.
nitrogencarbonsoilorganic matterdecompositionmicrobeboreal forest